1. Van Delft J, Meijer F, Van Best J, Van Haeringen N. Permeability of blood-tear barrier to fluorescein and albumin after application of platelet-activating factor to the eye of the guinea pig. Mediat Inflamm. [1997] 6:381–3. 10.1080/09629359791532
  2. Panaser A, Tighe BJ. Function of lipids–their fate in contact lens wear: an interpretive review. Contact Lens Anterior Eye. [2012] 35:100–11. 10.1016/j.clae.2012.01.003 3. Khuri RN. Device for Determination of Tear Constituents. U.S. Patent No. 5, 352, 411. Washington, DC: U.S. Patent Trademark Office; [1994]
  3. Thaysen JH, Thorn NA. Excretion of urea, sodium, potassium and chloride in human tears. Am J Physiol-Legacy Content. [1954] 178:160–4. 10.1152/ajplegacy.1954.178.1.160
  4. Baca JT, Finegold DN, Asher SA. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocular Surf. [2007] 5:280–93. 10.1016/S1542-0124[12]70094-0 [5. Ma X, Ahadian S, Liu S, Zhang J, Liu S, Cao T, et al.. Smart contact lenses for biosensing applications. Adv Intell Sys. [2021] 3:2000263. 10.1002/aisy.202000263
  5. Ma X, Ahadian S, Liu S, Zhang J, Liu S, Cao T, et al.. Smart contact lenses for biosensing applications. Adv Intell Sys. [2021] 3:2000263. 10.1002/aisy.202000263
  6. Cope JR, Collier SA, Nethercut H, Jones JM, Yates K, Yoder JS. Risk behaviors for contact lens–related eye infections among adults and adolescents—United States, 2016. MMWR. Morbidity Mortal Weekly Report. [2017] 66:841. 10.15585/mmwr.mm6632a2
  7.  Klonoff DC. Overview of fluorescence glucose sensing: A technology with a bright future. J Diabetes Sci Technol. [2012] 6:1242–50. 10.1177/193229681200600602
  8. Badugu R, Lakowicz JR, Geddes CD. A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J Fluorescence. [2003] 13:371–4. 10.1023/A:1026103804104
  9. Badugu R, Reece EA, Lakowicz JR. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring. J Biomed Opt. [2018] 23:057005. 10.1117/1.JBO.23.5.057005
  10. Deng M, Song G, Zhong K, Wang Z, Xia X, Tian Y. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sens. Actuators B Chem. [2022] 352:131067. 10.1016/j.snb.2021.131067
  11. Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, et al.. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. [2018] 4:eaap9841. 10.1126/sciadv.aap9841
  12. Chen G, Yu X, Wang Y, Quan TM, Matsuyama N, Tsujimura T, et al.. In A 0.5 mm 2 Ambient Light-Driven Solar Cell-Powered Biofuel Cell-Input Biosensing System with LED Driving for Stand-Alone RF-Less Continuous Glucose Monitoring Contact Lens, 2022 27th Asia and South Pacific Design Automation Conference[ASP-DAC]. Taipei: IEEE; [2022]. 1–2. 10.1109/ASP-DAC52403.2022.9712523
  13. Keum DH, Kim SK, Koo J, Lee GH, Jeon C, Mok JW, et al.. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv. [2020] 6:eaba3252. 10.1126/sciadv.aba3252
  14. Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, et al.. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Comm. [2017] 8:14997. 10.1038/ncomms14997
  15. Tseng R, Chen CC, Hsu SM, Chuang HS. Contact-lens biosensors. Sensors.
  16. Lorand JP. Edwards JO. Polyol complexes and structure of the benzeneboronate ion. J Org Chem. [1959] 24:769–74. 10.1021/jo01088a011
  17.  Elsherif M, Alam F, Salih AE, AlQattan B, Yetisen AK, Butt H. Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers. Small.