Zdroje:
- Van Delft J, Meijer F, Van Best J, Van Haeringen N. Permeability of blood-tear barrier to fluorescein and albumin after application of platelet-activating factor to the eye of the guinea pig. Mediat Inflamm. [1997] 6:381–3. 10.1080/09629359791532
- Panaser A, Tighe BJ. Function of lipids–their fate in contact lens wear: an interpretive review. Contact Lens Anterior Eye. [2012] 35:100–11. 10.1016/j.clae.2012.01.003 3. Khuri RN. Device for Determination of Tear Constituents. U.S. Patent No. 5, 352, 411. Washington, DC: U.S. Patent Trademark Office; [1994]
- Thaysen JH, Thorn NA. Excretion of urea, sodium, potassium and chloride in human tears. Am J Physiol-Legacy Content. [1954] 178:160–4. 10.1152/ajplegacy.1954.178.1.160
- Baca JT, Finegold DN, Asher SA. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocular Surf. [2007] 5:280–93. 10.1016/S1542-0124[12]70094-0 [5. Ma X, Ahadian S, Liu S, Zhang J, Liu S, Cao T, et al.. Smart contact lenses for biosensing applications. Adv Intell Sys. [2021] 3:2000263. 10.1002/aisy.202000263
- Ma X, Ahadian S, Liu S, Zhang J, Liu S, Cao T, et al.. Smart contact lenses for biosensing applications. Adv Intell Sys. [2021] 3:2000263. 10.1002/aisy.202000263
- Cope JR, Collier SA, Nethercut H, Jones JM, Yates K, Yoder JS. Risk behaviors for contact lens–related eye infections among adults and adolescents—United States, 2016. MMWR. Morbidity Mortal Weekly Report. [2017] 66:841. 10.15585/mmwr.mm6632a2
- Klonoff DC. Overview of fluorescence glucose sensing: A technology with a bright future. J Diabetes Sci Technol. [2012] 6:1242–50. 10.1177/193229681200600602
- Badugu R, Lakowicz JR, Geddes CD. A glucose sensing contact lens: A non-invasive technique for continuous physiological glucose monitoring. J Fluorescence. [2003] 13:371–4. 10.1023/A:1026103804104
- Badugu R, Reece EA, Lakowicz JR. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring. J Biomed Opt. [2018] 23:057005. 10.1117/1.JBO.23.5.057005
- Deng M, Song G, Zhong K, Wang Z, Xia X, Tian Y. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sens. Actuators B Chem. [2022] 352:131067. 10.1016/j.snb.2021.131067
- Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, et al.. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. [2018] 4:eaap9841. 10.1126/sciadv.aap9841
- Chen G, Yu X, Wang Y, Quan TM, Matsuyama N, Tsujimura T, et al.. In A 0.5 mm 2 Ambient Light-Driven Solar Cell-Powered Biofuel Cell-Input Biosensing System with LED Driving for Stand-Alone RF-Less Continuous Glucose Monitoring Contact Lens, 2022 27th Asia and South Pacific Design Automation Conference[ASP-DAC]. Taipei: IEEE; [2022]. 1–2. 10.1109/ASP-DAC52403.2022.9712523
- Keum DH, Kim SK, Koo J, Lee GH, Jeon C, Mok JW, et al.. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv. [2020] 6:eaba3252. 10.1126/sciadv.aba3252
- Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, et al.. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Comm. [2017] 8:14997. 10.1038/ncomms14997
- Tseng R, Chen CC, Hsu SM, Chuang HS. Contact-lens biosensors. Sensors.
- Lorand JP. Edwards JO. Polyol complexes and structure of the benzeneboronate ion. J Org Chem. [1959] 24:769–74. 10.1021/jo01088a011
- Elsherif M, Alam F, Salih AE, AlQattan B, Yetisen AK, Butt H. Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers. Small.